If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4-28=0
We add all the numbers together, and all the variables
x^2-24=0
a = 1; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·1·(-24)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*1}=\frac{0-4\sqrt{6}}{2} =-\frac{4\sqrt{6}}{2} =-2\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*1}=\frac{0+4\sqrt{6}}{2} =\frac{4\sqrt{6}}{2} =2\sqrt{6} $
| -2y=2= | | x-270=x/5 | | 6+-7=2t+5 | | 2(14x-11)=40x-(2x-5) | | x-270=5x | | 22=9(5a+7) | | 7s-30=159 | | 9=v/3-15 | | 5t=-25 | | y+6y=63 | | x/5+8=38 | | 48=11w-3w | | 0.8/32=n/9 | | 8z+9=4z | | -26-3x=-6(8x+5) | | 9x+9-6x(6+8)=7(7+3) | | 6y-16=34 | | -35y+-63=32+8y | | 7w+8=11w | | 6k=7/8 | | 41=5w-4 | | 12-4n=20 | | Q5r+11=5 | | |3x+4|=6x+1 | | 9=7-y | | 5w-2=5 | | (4x-23)=(4x-9) | | 4p/5+7p=8 | | 8^x+5=11^-4x | | 7m+6=6+7 | | x(7x2+12x-4)=0 | | 2x/5+1/3=2x/3+1/2 |